Tracking survey:
ALICE central tracking overview

Carlos Perez



* A broad discussion of the tracking problem and solutions for
ALICE during their first run will be presented here.

 The following slides summarise material publicly available in:

—  Technical Design Report of the Time Projection Chamber (CERN/LHCC 2000/001)

—  Technical Design Report for the Upgrade of the ALICE Time Projection Chamber (CERN-LHCC-2013-020)
—  Performance of the ALICE Experiment at the CERN LHC (CERN-PH-EP-20140931)

—  ALICE: Physics Performance Report, Volume | (J. Phys. G: Nucl. Part. Phys. 30 2004 1517-1763)

—  The ALICE experiment at the CERN LHC (2008 Jinst 3 S08002)

—  The ALICE data flow: from calibration, to QA, through reconstruction (LHCP2016, M. lvanov)

 The information presented here may be an underestimated
representation (i.e. not complete) of the solution of ALICE for
tracking. | apologise in advance.
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ALICE detector
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Clusters in

TPC

Pad size [mm?] | Number of rows | Number of pads
Inner chamber (84.1 < r < 132.1 cm) 4x7.5 64 5732
Outer chamber (134.6 < r < 198.6 cm) 6 > 10 64 6038
Outer chamber (198.6 < r < 246.6 cm) 6 > 15 32 4072
TPC total 160 570312

e Clusters use 2D centre of gravity (pad-row and time)

e At high densities, take into account cluster structure
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Tracking algorithm

 Kalman filter is used

— Depends critically on initial seed values and covariances

e Seeding is done twice: first, using primary vertex; second,
assuming track originated elsewhere

* Procedure repeats several times moving closer to centre
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Track following (3 steps)

STEP 1a

e Starts combining space-points from outermost padrow

* Propagate state vector of the track parameters and
covariances to the next padrow

 Add to the inverted covariance matrix a noise term
(representing information lost due to stochastic processes:
MS, ELF, etc)

* If space-point compatible with the the track prolongations
found, we add this and update the seed.

« Remove primary vertex from constraints

 Keep moving until innermost layer is reached
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Track following (3 steps)

STEP 1b

* Tracks are propagated to the outer layer of the ITS
e Start with the highest momentum tracks (to reduced comb)

* Tracks are followed through ITS without primary vertex
constraints.

 Whenever more than one cluster is compatible (window half
width=4sigma), all possibilities are followed independently
(i.e. each TPC track can have several candidate paths in ITS).

e Optionally an additional track finding step using only ITS space
points that are not associated to any found track.
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Track following (3 steps)

STEP 2

 When ITS tracking is completed, Kalman filter is reversed.

* Following goes from inner layer of ITS to outer layer of TPC,
then continue to TRD, TOF, HMPID and space-points in CPV in
front of PHOS.
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Track following (3 steps)

STEP 3

* Finally Kalman is reversed one more time and refit all tracks
from outside inwards.
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Tracking flow in a nutshell
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Performance of tracking algorithm

Track Finding Efficiency
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Figure 8.5: Physical track-finding efficiency for different combinations of the tracking detectors.
Left: Central Pb—Pb collisions (dN.,/dn = 6000). Right: pp collisions.

Noticed that the efficiency is driven by the amount of dead zones in the different
detectors. For TRD, additionally, the interaction with material and decays play a role

Carlos (Carlos.PerezLara@stonybrook.edu)



Performance of tracking algorithm

PT Resolution
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Figure 8.6: Transverse-momentum resolution for different combinations of the tracking detectors.
Left: Central Pb—Pb collisions (dN.,/dn = 6000). Right: pp collisions.

Noticed that the resolution improves with the extension from larger tracking length
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 For Runl and Run2, ALICE has employed successfully the
Kalman filter plus a reiterative multistage flow methodology to
solve the tracking in the central region.

* Not so clear if after upgrade they will continue this path.
Other technologies are being explored: Hough transformation
(see Phys Part and Nucl Lett 2016, Vol 13, No 5, 654-658)
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Coordinate systems in ALICE
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